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Spiral waves in nematic liquid crystals: Experimental analysis of selection rules

A. Vierheilig,* C. Chevallard, and J. M. Gilli
Institut Non Linéaire de Nice, UMR 129, CNRS, UNSA, 1361 Route des Lucioles, 06560, Valbonne, France

~Received 17 October 1996!

Archimedian spiral waves develop around umbilics, in an homeotropically anchored nematic sample. They
are observed under the influence of a rotating magnetic field in the plane of the glass plates, and in presence of
a destabilizing electric field. The geometrical characteristics of these experimental spirals~pitch, rotation
frequency, etc.! are analyzed in parameter space. These spiral waves are numerically fitted with Archimedian
spirals to good degree of accuracy. The transverse speed of zero curvature Bloch walls are deduced from these
measurements. The existing domain of these spiral waves is limited, respectively, toward large~low! magnetic-
field rotation speed, or low~large! magnetic-field intensities, by the asynchronous regime~by a Bloch-Ising
transition of the walls!. These experimental results are compared to two-dimensional interactive simulations of
a Ginzburg-Landau equation. The measurements made in the low-field domain~which is a validity condition
for the model derivation! confirm the applicability of the same selection criterion deduced by Burton, Cabrera,
and Frank@Philos. Trans. R. Soc. London Ser. A243, 299~1951!# for the description of spiral shaped steps in
cristalline growth, and more recently for the fronts of excitable media.@S1063-651X~97!12706-4#

PACS number~s!: 61.30.Gd, 61.30.Jf, 47.20.Ky
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INTRODUCTION

In the main part of this work, the dynamics of spiral pa
tern in homeotropically aligned nematic liquid crystal laye
above the Fre´edericksz transition, is investigated. These s
rals, which have been observed for several years, have to
knowledge not been the subject of a systematic quantita
analysis. One recent attempt@1# to fit the selection rules with
the experimental results of Ref.@2# is associated with a
strong tilt situation which is not in the domain of validity fo
the Ginzburg-Landau equation used.

In the presence of an in-plane rotating magnetic fie
spiral patterns develop around vortices which connect Bl
walls of opposite chirality. The Bloch walls separate the t
symmetrical distorted states of the twofold degenerate Fre´ed-
ericksz transition under a magnetic field. Due to their op
site chirality@3#, the two types of Bloch walls propagate@4#
in opposite directions, and form a double-armed sp
around the vortex. The topological charge is either11 or
21.

As described in Ref.@5#, the experiments were made on
nematic liquid crystal sandwiched between glass plates
homeotropic alignment. Initially, in the absence of exter
fields the directorn points alongẑ throughout the sample. To
observe the formation of spiral patterns, we need to dest
lize this homeotropic state. This is done by applying a ho
zontal magnetic fieldH and/or a vertical electric fieldE
@since for methoxybenzylidenebutylaniline~MBBA !, which
is the liquid crystal material used here, the dielectric anis
ropy «a is negative#. The threshold of this Freedericksz tra
sition @6# is given byjFreed51, where

j5S xaH
22«aE

2

K3S p

d D 2 D 1/2

~1!
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whereK3 is the bend elastic constant, andd the thickness of
the sample. If the Fre´edericksz transition is induced pure
by the electric field, we will have an infinite degeneracy
the azimuthal angle of the tilted director.

The tilt angle is a function ofj andz @see Fig. 1~a!#. In
the case of external fields just above the Freedericksz tra
tion (j*1), only the first Fourier mode becomes unstab
and the square of the tilt angle in the midplane of the sam
increases proportionally to (j21). In the case of strong ex
ternal fields (j@1), higher Fourier modes are unstable a
the tilt angle will be saturated atp/2 in most of the sample
@see Fig. 1~b!#.

In the case of a small tilt angle, the system can be m
eled by the two-dimensional~2D! perturbed Ginzburg-
Landau equation with a complex order parameter@5#, using
the torque equation

g1n3] tn52n3
dF

]n
,

whereF is the Frank free energy including coupling to e
ternal fields, andg1 the rotational viscosity, and assumin
that only the first Fourier mode is unstable~small tilt angles!,
we can derive the following dynamical equation:

g1] tA5mA1gĀe2int1
K11K2

2
¹2A1

K12K2

2
Āh̄ h̄

2auAu2A, ~2!

with

m5 1
2xaH

22«aE
22K3S p

d D 2,
g5 1

2xaH
2,.
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a5 1
2 ~K12

3
2K3!S p

d D 22 3
4«aE

2,

h5x2 iy .

n is the rotation frequency of the magnetic field, andxa and
«a the diamagnetic and the dielectric anisotropies, respe
tively. The complex order parameterA5X1 iY describes the
x andy components of the directorn in the midplane of the
sample, with

Āh̄ h̄5~]x1 i ]y!
2~X2 iY!.

The parameters space is a 4D space, withd the thickness
of the sample,E and H the respective magnitudes of the
electric and magnetic fields, andn the rotation frequency of
the magnetic field. Different regions of the parameter spa
correspond to different dynamical regimes. In particular, th
spiral patterns considered in this paper can only be observ
in a parameter space region where Bloch walls exist. Th
region is limited, toward low rotation frequencies of the
magnetic field, and toward high-field strength, by the trans
formation of Bloch walls into static Ising walls. Conversely,
toward high rotation frequencies or low-field strength, th
transition to the asynchronous regime, in which the directo
rotates at lower frequency than the external magnetic field,
not directly associated with the disappearance of spir

FIG. 1. The inclination angle.~a! The tilt angle ofn measured
from the z axis is plotted as a function ofz for different field
strengths.~b! The square of the tilt angle atz5d/2 is plotted as a
function of j. From an expansion of the Frank free energy aroun
the Fréedericksz transition, we obtain the slope of the dash-dotte
line to be 4 K3 /K1.
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waves. These last exist as long as the rotation frequenc
the spiral is larger than the rotation frequency of the direc
in the locally rotating coordinate system.

I. GINZBURG-LANDAU THEORY

The Ginzburg-Landau equation~2! can be renormalized
to

] t8A85A81g8Ā8e2in8t81¹82A81dkĀh̄8 h̄8
8 2uA8u2A8

~3!

by

Ā5S am D 1/2, the scale for the order parameter,

t̃5
g1

m
the characteristic time,

x̃5SK11K2

2m D 1/2 the characteristic length,

and

g85
1

m
g, A85A/Ã,

n85
1

m
ng1 , x85x/ x̃,

dk5
K12K2

K11K2
, h85h/ x̃,

t85t/ t̃,

In the isotropic approximation (dk50) we obtain a 2D
parameter space ing8 and n8 ~see Fig. 2, and, for more

d
d

FIG. 2. The transition lines in the parameter space of the p
turbed Ginzburg-Landau equation.g85n8 is the synchronous-
asynchronous transition, andgeff8 5

1
3 is the Ising-Bloch transition.

The two dots indicate the static Ising-Bloch transition when tak
into account elastic anisotropy. The ratios of the elastic const
correspond to MBBA at room temperature. The simulation p
formed for comparison with experimental results in Sec. II C a
done along the dashed line of the Ginzburg-Landau param
space:g85123.48n8.
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7130 55A. VIERHEILIG, C. CHEVALLARD, AND J. M. GILLI
details, Ref.@5#!. There are two main regions of interest:
~i! The asynchronous regime withn8.g8 ~the lower part

of Fig. 2! where the order parameterA rotates at a frequenc
lower thann. Experimentally this means that the rotatio
frequency of the magnetic field is too large for the appl
field strength and the director cannot follow.

~ii ! The synchronous regime withg8.n8 ~the two upper
parts of Fig. 2!, where the order parameter rotates with fr
quencyn. Experimentally, the director rotates with the sam
frequency as the external magnetic field, but with a cert
retardation angle.

The synchronous-asynchronous transition is mainly c
trolled by the rotational viscosityg1 . Since we are intereste
in the synchronous regime, we transform Eq.~3! in the lo-
cally rotating coordinate system,A→Aein8t:

] tA5~11 in8!A1g8Ā1¹2A1dkĀh̄ h̄e
22in8t2uAu2A.

~4!

With dk50 andg8Þ0, we have two fixed points in the
synchronous regime, which lie on theX axis for n850, and
otherwise are dephased by the retardation angled, with
g8sin 2d5n8 and de@0;p/4#. For analytical treatment it is
convenient to perform another local rotation of the order
rameter in the ‘‘phase-shifted’’ coordinate syste
A→Aeid. In the isotropic approximation, the real and imag
nary part of the order parameterA become

] tX5~11geff8 !X22n8Y1¹2X2~X21Y2!X,

] tY5~12geff8 !Y1¹2Y2~X21Y2!Y, ~5!

with geff8 5Ag822n825g8cos2d. The two fixed points of
Eq. ~5! areA56A11geff8 .

In the upper region of Fig. 2, the heteroclinic orbit co
necting in space the two fixed points is called an Ising w

AIsing5A11geff8 tanh
x

x0
, ~6!

with x05A2/(11geff8 ).
At geff8 51

3, the Ising wall becomes unstable, and tran
forms for decreasingg8 into a Bloch wall. This describes
different kind of heteroclinic orbit. This transition is a pitch
fork bifurcation. An appropriate order parameter of the Isin
Bloch transition is the chiralityx56A123geff8 . At the tran-
sition there is a twofold degeneracy between Bloch walls
either positive or negative chirality. Analytically, there ex
only perturbative solutions for Bloch walls near the tran
tion from Ising walls:

ABloch5A11geff8 tanh
x

x0
1 i

x

cosh
x

x0

. ~7!

In the rotating case (n8Þ0), the Bloch walls propagate, an
at first order inx the velocityc of a straight wall is@3,5,7#

c5
3p

2&

xn8

11geff8
;x. ~8!
-

in

-

-

l:

-

-

f

-

Bloch walls of opposite chirality are connected via Ne´el-
point-type vortices of topological chargeS561. Near the
Ising-Bloch transition the solution reads@7#

ANéel5A11geff8 tanh
x

x0
1 i

x

cosh
x

x0

tanhS yr 0D , ~9!

with r 052/A123geff8 .
Since the Ne´el-point-type vortices connect two Bloc

walls of opposite chirality, they propagate in the rotati
case in opposite directions. A double-armed spiral for
around the vortex, wherer 0 gives approximately the size o
the spiral core.

If we take into account the elastic anisotropy, the thre
old of the Ising-Bloch transition becomes a function of t
angle between the interface and the magnetic field. Anal
cal expressions exist only forn850 and the two extreme
cases called splay-bend walls~the interface is perpendicula
to the magnetic field! and twist walls~the interface is paralle
to the magnetic field!. From Ref. @5# the threshold of the
static Ising-Bloch transition becomes

g IB8 5a with a5
~A118b11!2

16b2~A118b11!2
, ~10!

whereb5K1 /K2 for splay-bend walls andb5K2 /K1 for
twist walls in the approximation ofK15K3 . For interfaces
with an angle different from 0 orp/2, the threshold value
g IB8 lies in between the two above limits.

Using the elastic constants given in Sec. II A for MBB
at room temperature, we obtainb5 3

2 and a'0.394 for
splay-bend walls, andb5 2

3 and a'0.275 for twist walls
~see Fig. 2!.

One can associate the 2D parameter space of Eq.~4!
(n8,g8) with the experiment. They area priori 4D, with d
the thickness of the cell,E the electric field,H the magnetic
field, andn the rotation frequency of the magnetic field@see
Eq. ~2!#. However,E andd can be reduced to a single var
able and one obtains a three-dimensional parameters spa
H, n ands @see Figs. 3~a! and 3~b!#, where

s52eaE
22K3S p

d D 2.
TracingH2 as a function ofn, with s as a parameter, on

finds four transition lines:

~1! H252
1

xa
S ~g1n!2

s
1s D with s,0,

the Fréedericksz transition to the synchronous regime~pitch-
fork bifurcation!;

~2! H252
2

xa
s with s,0,

the Fréedericks transition to the asynchronous regime~Hopf
bifurcation!;
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~3! H25
2

xa
g1n ~independent ofs!,

the synchronous-asynchronous transition; and

~4! H25
1

4xa

~s13As218~g1n!2!n@
s

g1

˜ 3&

4

2

xa

g1n,

the Ising-Bloch transition~pitchfork bifurcation!. The two
types of Fre´edericksz transitions exist only fors,0 (⇔E
,EF) and

nc52
s

g1
with s,0.

For s.0, Bloch walls are stable forn50 @see Fig. 3~b!#.
This considerably facilitates experimental manipulatio
Note that the synchronous-asynchronous transition dep
neither on the applied electric field nor on the cell thickne
With the elastic anisotropy, the static Ising-Bloch transiti
becomes

H25
2

xa

a

12a
s, ~11!

wherea is defined in Eq.~10!.

FIG. 3. The theoretical transition lines in the experimental
rameter space.~a! s520.05 ~corresponding to the caseE,EF!.
~b! s50.3.
.
ds
.

II. EXPERIMENT

A. Setup

The experimental setup used is similar to ones descri
in Ref. @5#. The probe consists of two glass plates contain
the liquid crystal. The inner surfaces are faced with indiu
tin-oxide, a transparent conductor, allowing the applicat
of an electric field normal to the glass plates. A hig
frequency ac voltage of 5 kHz is used to avoid space-cha
creation and electrohydrodynamic effects. Since the die
tric anisotropy of MBBA is negative, the electrical fiel
serves to destabilize the homeotropic state.

The inner surfaces of the glass plates are treated w
lecithin, which provides a homeotropic anchoring. The sp
ers between the two glass plates were 3.5–75mm thick.
Typical values for the material parameters for MBBA
room temperature are:

xa5
4pxa,cgs

m0
51

A m

V s
magnetic anisotropy,

ea5«a,cgs«0526.195310212
A s

V m
dielectric anisotropy,

K156.0310212 N splay-elastic constant,

K254.0310212 N twist-elastic constant,

K357.5310212 N bend-elastic constant,

g157.731022 N s m22 rotational viscosity,

@H#5tesla5
V s

m2 ,

@E#5
V

m
,

where the notationH for the magnetic induction is kept.
However, measurements performed by different grou

do not always coincide~Ref. @6#, Table 3.2!, and the value
for the rotational viscosity g1 , which controls the
synchronous-asynchronous transition, changes strongly w
varying the temperature near ambient@8#.

The probe is fixed above the gap between two perman
magnets, mounted on a turnable disc~see Fig. 4!. The
magnetic-field strength is controlled by varying the distan
between the sample and the magnets. On the symmetry
a horizontal field of up to 7 kG is applied near the magne
Gradients are encountered up to 500 G/mm in the vert
direction.

The probe is placed between crossed polarizer and
lyzer. The birefringence of the liquid crystal is used to o
serve the spiral pattern. A device is added, allowing us
turn the polarizer and analyzer to the same frequency as
magnetic field. This is used in order to keep the angle
tween the polarized light and the director constant, wh
being in the synchronous regime. This provides an image
constant contrast, which is useful for the image analysis.

Other experimental setups have been proposed@2,4#, but
this one has the advantage that single vortices of the des

-
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sign can easily be created. The use of permanent mag
leads, especially in the range of high magnetic fields, to la
gradients, which causes uncertainties in the strength of
magnetic field. Additionally, high-field strengths are encou
tered only when bringing the sample near the magnets. T
makes it difficult to add a temperature control device.

In our experiment we use MBBA since it has, in compa
son with other nematic liquid crystals, a large magnetic
isotropy. It is thus possible to perform the experiment in t
relatively simple setup, since permanent magnets are s
cient as a field source. However, MBBA is subject to a d
radation process in the presence of H2O ~Schiff base!. This is
nearly inevitable due to the humidity of the air. The deg
dation of the liquid crystal causes a decrease of the thres
temperature of the nematic-isotropic transition which res
in a decrease of the rotational viscosityg1 and the three
elastic constants.

For anchoring on the glass plates the organic mate
lecithin is used. It is also susceptible to degradation. T
results in weaker surface anchoring of the director@9#. These
degradation processes will influence the behavior of the
ral pattern, especially near the Freedericksz transition, wh
is controlled by the elastic constant for bend deformat
K3 and the strength of the surface anchoring.

B. Spiral analysis

The analysis of the spirals consists of two steps. The
one is to record series of images of the spiral as a functio
time, and the second one is to fit each spiral to an Archim
dian form, which allows one to determine the wavelengthl
and the rotation frequencyv. The program uses theSCREEN
MACHINE II card, to display the live video of the camera o
the screen. It allows one to grab the single images of
series either by hand or automatically at a fixed rate, wh
the maximum rate of the acquisition card is about one im
per five seconds.

The next step consists of finding the spiral arm, and
followed by a fit into an Archimedian form. In the exper
ment the spiral arm, which is a curved, moving Bloch wa

FIG. 4. The experimental setup.
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is bright against the background, possibly with a very sma
dark area in the middle@see Fig. 5~a!#. The intensity profile
when crossing the spiral arm perpendicularly can be appro
mated byF(x)5A0@12cos„2p(x2x0)…#, wherex and x0
are renormalized by the width of the spiral arm,A0 is the
amplitude, andx0 is the displacement which gives the cente
of the arm@see Fig. 5~b!#.

If we projectF(x) onto the double period

c1/25E
0

1

dx F~x!cos~px!52A0

4

3p
sin~2px0!

and onto the fundamental mode

c05E
0

1

dx F~x!5A0 ,

we obtain

x05
1

2p
arcsinS 2

4

3p

c1/2
c0

D

FIG. 5. Experimental picture and intensity of a spiral arm.~a! A
typical image of the spirals observed in the liquid crysta
(333 mm2). ~b! The intensity plot when crossing perpendicularly a
spiral arm, approximated byF(x).
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The actual intensity at a given position is interpolated fro
the four pixels surrounding it. By default we use five inte
polations per pixel, but this can be adjusted by the user.

This procedure is repeated while turning with a step s
defined by the user around an approximate center given
the user and using the newly found position of the spiral a
as radial distance. The program thus follows the spiral
wards its center.

These points are then fitted to an Archimedian fo
r 0(u)5(l/2p)(u2u0), where we have four unknown var
ables: the wavelengthl, the initial angleu0 , and the position
of the centerr0 . Since one of the unknown variables is p
riodic, there exists no analytical expression to calcul
them, and we use an iterative method.

The first step is to transform the points from Cartes
coordinates to polar coordinates around a preliminary cen
and to perform a linear regression on the thus-obtained fu
tion r (u). This gives us the preliminary wavelengthl8 and
initial angle u08 . The function G(u)5r (u)2(l8/2p)(u
2u08) will have periodic oscillations with a period of 2p,
depending in size and phase on the displacementdr of the
preliminary center. Supposingudr u!l, for the two compo-
nents of the displacementdr we obtain

dx52
1

pn E
ũ

ũ12pn
du G~u!cosu,

dy52
1

pn E
ũ

ũ12pn
du G~u!sinu,

wheren is an integer.
This procedure is repeated untiludr u lies below an upper

boundary~actually a thousand pixels!. These fits are done o
the two arms of the double-armed spiral and on each im
of the series~see Fig. 6!. At the end of the series, linea
regressions are done to calculate the mean value of the w
lengthl, the rotation frequencyv, and the angular separatio
of the two spiral arms.

FIG. 6. Archimedian fit. The spiral of Fig. 5~a! fitted with an
Archimedian spiral (333 mm2).
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Since we expect deviations from the purely Archimedia
spiral near the core@10#, the points we use for the fit are
taken in the far field of the spiral. Nevertheless the deviatio
from the Archimedian spiral near the core remains small
general.

C. Experimental determination of the transition lines
in the parameter space

The Ginzburg-Landau equation, which is used for mode
ing the experiment, supposes small inclination angles of t
director from the initially homeotropic state. In order to vali
date the model, we tried to use a destabilizing electric fie
just above the Freedericksz transition, small magnetic field
and low rotation frequencies. In this range, due to the lo
velocities of the Bloch walls, the experiment becomes ve
time consuming, and during the experiment temperatu
changes of up to 2 °C occurred around a mean value of 21
due to the heating of the microscope.

For the experimental data given in the following, thick
ness of the sample was 23mm and the voltage 5 Veff . With a
magnetic field of about 3 kG, this corresponds t
j'1.6 in Eq. ~1!. Thus even at this relatively low field
strengths the director in the midplane of the sample is a
ready strongly inclined, but still lower field strengths cause
experimental problems.

We did three series of measurements, each for a spi
with a 11 vortex and a21 vortex core, where we kept the
rotation frequency of the magnetic fieldn constant and var-
ied the magnetic field strengthH ~see Figs. 7 and 8!. The
maximum field strength is given by the beginning of th
Ising-Bloch transition of parts of the spiral arms. Because
the elastic anisotropy, this transition depends on the ang
between the Bloch wall interface and the magnetic field@5#,
and the parts of the spiral arms parallel to the magnetic fie
will transform to Ising walls at lower field strength. In Fig. 7,

FIG. 7. The parameter space. The lines for the Ising-Bloch a
the synchronous-asynchronous transition are taken from theory. T
three vertical lines are the measurements performed for three ro
tion frequencies of the magnetic fieldnA , nB , andnC . The dia-
monds indicate the experimentally found asynchronou
synchronous transition, and the upper ends of the lines are
beginning of the Ising-Bloch transition. The heavy dots indicate th
theoretical static Ising-Bloch transition for a splay bend and a twi
wall.
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the two dark points indicate the theoretical static Ising-Blo
transitions for splay-bend and twist walls. On the other ha
the elastic anisotropy does not influence the synchrono
asynchronous transition, and the data found experimen
provide a comparison with theory.

The threshold values for the synchronous-asynchron
transition, associated with the minimum selected wavelen
~and to the phase slip of the director relative to the magn
field! are in good agreement with theoretical predictions~see
Figs. 7 and 8#.

FIG. 8. Experimental data.~a! The velocity of a straight wall
c. ~b! The selected wavelengthl. ~c! The rotation frequencyv, as
a function of the magnetic-field strengthH. The applied tension is
U55Veff , and the cell thickness isd523mm. These experimenta
points correspond to spirals witha11 defect in the core.
h
,
s-
lly

us
th
ic

Spiral patterns exist even in the asynchronous regime
long as the rotation frequency of the spiralv is larger than
the rotation frequency of the director~in the rotating coordi-
nate system! 2p/T with @11#

T5
2p

F n22S 1
2xaH

2

g1
D 2G 1/2

the time for a 2p rotation of the director, andn the rotation
frequency of the magnetic field.

Spirals with11 vortex and21 vortex cores differ in the
selected wavelengthl and in the rotation frequencyv up to
20%. The spiral around a vortex21 selects a larger wave
length and a smaller rotation frequency~see Fig. 9!: due to
the anisotropy of elasticity, vortices11 and21 have dif-
ferent elastic energies which results in different core size

When decreasing the magnetic-field strength and pas
into the asynchronous regime, we observe a character
increase in the wavelength, and, with increasing rotation
quency of the magnetic field, the wavelength at t
synchronous-asynchronous transition decreases.

The velocity of a straight wallc5(1/2p)lv, which we
can deduce from the wavelength and the rotation freque
of the spiral, should obviously be equal for the two types
spiral. In our measurement, this has not been exactly the
due to the above-mentioned experimental difficulties.

For nB'0.57 rad/s we performed numerical simulatio
of Eq. ~4!. Due to low differences between11 and21
spirals in the simulation, we left out the term accounting
the elastic anisotropy. We transformed the experimental
rameters in the two-dimensional parameter space of Eq.~4!,
which leads to@see Eq.~3!#.

g85n8

«aE
21K3S p

d D 2
ng1

11'123.48n8,

with n850.195,. . . , 0.227 andg850.209,. . . , 0.321 ~see
Fig. 2!. The synchronous-asynchronous transition is atn8
5g8'0.2231 and the experimental data are reduced to n
dimensional units. We obtain good agreement between
simulation and the experimental data and the smallest wa
length at the synchronous-asynchronous transition@see Figs.
9~a!–9~c!#.

D. Verification of the Gibbs-Thomson relation

We checked the validity of the Gibbs-Thompson relati
for the velocity of a curved Bloch wall:

cn5c2Dx, ~12!

with cn the normal velocity,c the velocity of an uncurved
wall, D the orientational diffusion constant, andx the local
curvature.

In the case of a circle-shaped interface the curvaturx
equals the inverse of the radius. We measured the radiu
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such a circle-shaped outward-moving Bloch wall as a fun
tion of time, from where we can derive the velocitycn as a
function of the curvaturex.

The experimental data show the expected linear behav
~see Fig. 10!. A linear regression gives a diffusion constan
of D576.3mm2/s, which is in rather good agreement with
the expected diffusion constantD5(K11K2)/2g1
'64.9mm2/s.

III. FREQUENCY SELECTION RULES

If we take the experimental data, corresponding to t
synchronous regime, for the three series of measureme

FIG. 9. Comparison between numerical simulations and expe
mental data. Experimental data are the reduced data correspon
to Figs. 8~a!, 8~b!, and 8~c!, with nB'0.57 rad/s and with21
vortex associated results added.
-

or
t

e
nts

done at low-field strength for both vortex (11) and vortex
(21), we see that, in thek2-v space withk52p/l, the
data collapse close to a unique curve~see Fig. 11!. This
behavior can be understood with the help of the simple geo
metrical model developed in the early 1950s by Burton, Ca
brera, and Frank~BCF! @12# to describe the selection rules of
the spiral-shaped steps arising in crystalline growth. In this
model, the Archimedian spirals parameters are only con
trolled by the Gibbs-Thomson relation, without taking into
account the influence of a possible spiral core size variation

From this model we obtain

v5
D

m
k2,

wherem>0.331. The full line of Fig. 11 corresponds to this
model associated with the diffusion constant expected in ou
experimental conditions, and is in good agreement with ou
measurements. This model is also in agreement with exper
mental observations of spiral waves in the Belousov
Zhabotinsky reaction, where at leastv/k2 is constant@13#.

In a recent work@14#, one of us developed a model to take
into account the influence of the core size variation which is

i-
ing

FIG. 10. The Gibbs-Thompson relation. The velocitycn of a
circle-shaped outward-moving interface, and the linear regression

FIG. 11. Frequency selection. The experimental data with low
field strength ink2-v space. The slope of the line isD/m, with
D'64.9mm2/s.
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predicted in the frame of a Ginzburg-Landau approach
deviation from the BCF model is expected in the sma
wavelength domain. Unfortunately the experimental obs
vation of such a deviation would probably be only possi
at unrealistic high magnetic-field strength and for very th
samples. Our system does not allow us to reach this par
eters domain, and no substantial deviations relative to
BCF model are visible.

CONCLUSION

In this work, we have investigated the geometrical pro
erties of experimental spiral waves, induced by a rotat
magnetic field, in a nematic sample undergoing the hom
tropic Fréedericksz transition. This kind of numerical fi
done on the polarizing microscope images, has been
done on numerical images, obtained from interactive sim
lations of a Ginzburg-Landau equation, directly derived fro
the nematic basic Frank free-energy expression and to
equilibrium equation. Both real and numerical measureme
are in good quantitative agreement in the domain of par
eters accessible to our experimental setup.
ic
.

A
-
r-

m-
e

-
g
o-

so
-

ue
ts
-

The experimental data plotted in thek2-v space all lie
along a single line of definite slope, in agreement with t
simple geometrical model of Burton-Cabrera-Frank hav
only the diffusion constant as free parameter: this beha
seems consequently to be in common with systems as di
ent as the excitable waves of the Belouzov-Zhabotinsky
action or the spiral-shaped steps observed in crystal
growth. Deviations from this simple selection rule, asso
ated with the umbilic core size variations, which are p
dicted in the ground of a Ginzburg-Landau approach, a
observable in simulations of the previous equation, are
accessible to our experiment.
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