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Spiral waves in nematic liquid crystals: Experimental analysis of selection rules
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Archimedian spiral waves develop around umbilics, in an homeotropically anchored nematic sample. They
are observed under the influence of a rotating magnetic field in the plane of the glass plates, and in presence of
a destabilizing electric field. The geometrical characteristics of these experimental $piteths rotation
frequency, etg.are analyzed in parameter space. These spiral waves are numerically fitted with Archimedian
spirals to good degree of accuracy. The transverse speed of zero curvature Bloch walls are deduced from these
measurements. The existing domain of these spiral waves is limited, respectively, towastblaygeagnetic-
field rotation speed, or lowlarge magnetic-field intensities, by the asynchronous regfmea Bloch-Ising
transition of the walls These experimental results are compared to two-dimensional interactive simulations of
a Ginzburg-Landau equation. The measurements made in the low-field donfaah is a validity condition
for the model derivationconfirm the applicability of the same selection criterion deduced by Burton, Cabrera,
and FranKPhilos. Trans. R. Soc. London Ser.243 299(1951)] for the description of spiral shaped steps in
cristalline growth, and more recently for the fronts of excitable mg#4063-651X%97)12706-4

PACS numbsgfs): 61.30.Gd, 61.30.Jf, 47.20.Ky

INTRODUCTION whereK3 is the bend elastic constant, addhe thickness of
the sample. If the Felericksz transition is induced purely

In the main part of this work, the dynamics of spiral pat- by the electric field, we will have an infinite degeneracy in
tern in homeotropically aligned nematic liquid crystal layers,the azimuthal angle of the tilted director.
above the Fredericksz transition, is investigated. These spi- The tilt angle is a function of andz [see Fig. {a)]. In
rals, which have been observed for several years, have to otiie case of external fields just above the Freedericksz transi-
knowledge not been the subject of a systematic quantitativiion (¢=1), only the first Fourier mode becomes unstable,
analysis. One recent atten]df to fit the selection rules with and the square of the tilt angle in the midplane of the sample
the experimental results of Ref2] is associated with a increases proportionally teé¢ 1). In the case of strong ex-
strong tilt situation which is not in the domain of validity for ternal fields ¢>1), higher Fourier modes are unstable and

the Ginzburg-Landau equation used. the tilt angle will be saturated at/2 in most of the sample
In the presence of an in-plane rotating magnetic field{see Fig. 1b)].

spiral patterns develop around vortices which connect Bloch In the case of a small tilt angle, the system can be mod-
walls of opposite chirality. The Bloch walls separate,the twoeled by the two-dimensiona(2D) perturbed Ginzburg-
symmetrical distorted states of the twofold degenerated~re |andau equation with a complex order paramé&r using
ericksz transition under a magnetic field. Due to their oppothe torque equation
site chirality[3], the two types of Bloch walls propagdt4]
in opposite directions, and form a double-armed spiral SE
around the vortex. The topological charge is eithet or yiNX dn= —nx%,
-1

As described in Ref5], the experiments were made on a
nematic liquid crystal sandwiched between glass plates in whereF is the Frank free energy including coupling to ex-
homeotropic alignment. Initially, in the absence of externalternal fields, andy, the rotational viscosity, and assuming
fields the directon points alongz throughout the sample. To that only the first Fourier mode is unstalggnall tilt angles,
observe the formation of spiral patterns, we need to destabwe can derive the following dynamical equation:
lize this homeotropic state. This is done by applying a hori-

zontal magnetic fieldd and/or a vertical electric fieldE —i KitKy o K=Ky —
[since for methoxybenzylidenebutylanilif®BBA), which V1A= uA+ YA+ —— VAT —— A
is the liquid crystal material used here, the dielectric anisot-
ropy &, is negativé. The threshold of this Freedericksz tran- —alA|?A, 2
sition [6] is given by &peeq= 1, Where

2 2\ 12 with

xaH —¢,E
(= T D
{3 )
3 d M:%XaHZ_SaEZ_K3<E) y
*Also at Inst. of Physics, Univ. of Bayreuth, D-95440, Germany. Y= %XaHZ,
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e FIG. 2. The transition lines in the parameter space of the per-
e turbed Ginzburg-Landau equation/’=»" is the synchronous-
@y il asynchronous transition, anglz=3 is the Ising-Bloch transition.
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The two dots indicate the static Ising-Bloch transition when taking
into account elastic anisotropy. The ratios of the elastic constants
correspond to MBBA at room temperature. The simulation per-
formed for comparison with experimental results in Sec. Il C are
done along the dashed line of the Ginzburg-Landau parameter
space:y' =1—-3.48".

Square of the tilt angle

waves. These last exist as long as the rotation frequency of
the spiral is larger than the rotation frequency of the director

() 12 14 16 18 2 in the locally rotating coordinate system.

FIG. 1. The inclination anglel@ The tilt angle ofn measured . GINZBURG-LANDAU THEORY
from the z axis is plotted as a function af for different field
strengths(b) The square of the tilt angle at=d/2 is plotted as a
function of & From an expansion of the Frank free energy around
the Fredericksz transition, we obtain the slope of the dash-dotted A=A+ ’EEZiV’t’-i-V'ZA' I 5k;’———|A’|2A’
line to be 4 K/K,. v Y "' @

The Ginzburg-Landau equatiai2) can be renormalized

)2 b
a3, 3| 7] 1o d

1/2
o A=(—) , the scale for the order parameter,
n=X—ly. M
v is the rotation frequency of the magnetic field, gndand - " S
e, the diamagnetic and the dielectric anisotropies, respec- t=— the characteristic time,
tively. The complex order paramet&r= X+iY describes the H
x andy components of the directaor in the midplane of the _ (KiFK,
sample, with X=

2u

1/2
) the characteristic length,

A= (35 F+idy)3(X—iY). and
The parameters space is a 4D space, @dithe thickness

of the sampleE and H the respective magnitudes of the ! A’=A/K,
electric and magnetic fields, andthe rotation frequency of

the magnetic field. Different regions of the parameter space
correspond to different dynamical regimes. In particular, the ,_1 x/X
spiral patterns considered in this paper can only be observed ’
in a parameter space region where Bloch walls exist. This

region is limited, toward low rotation frequencies of the Ki—K; ,
magnetic field, and toward high-field strength, by the trans- K= Ki+Ky, 77 /%,
formation of Bloch walls into static Ising walls. Conversely,

toward high rotation frequencies or low-field strength, the t' =t/t,

transition to the asynchronous regime, in which the director
rotates at lower frequency than the external magnetic field, is In the isotropic approximationdk=0) we obtain a 2D
not directly associated with the disappearance of spiraparameter space i’ and v’ (see Fig. 2, and, for more
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details, Ref[5]). There are two main regions of interest:

(i) The asynchronous regime witi >y’ (the lower part
of Fig. 2) where the order parametArrotates at a frequency
lower thanv. Experimentally this means that the rotation
frequency of the magnetic field is too large for the applied
field strength and the director cannot follow.

(ii) The synchronous regime with’ >»’ (the two upper
parts of Fig. 2, where the order parameter rotates with fre-
guencyv. Experimentally, the director rotates with the same
frequency as the external magnetic field, but with a certai
retardation angle.

The synchronous-asynchronous transition is mainly con
trolled by the rotational viscosity, . Since we are interested
in the synchronous regime, we transform E8). in the lo-

cally rotating coordinate systerA,HAe‘”/‘:

FA=(L+iv")A+y A+V2A+ kA e 2" = |AJPA,
(4)

With 6k=0 andy’ #0, we have two fixed points in the
synchronous regime, which lie on theaxis forv»' =0, and
otherwise are dephased by the retardation angjlevith
v'sin 25=v' and 8¢[0;w/4]. For analytical treatment it is

convenient to perform another local rotation of the order pa-

rameter in the “phase-shifted” coordinate system
A— A€, In the isotropic approximation, the real and imagi-
nary part of the order parametédrbecome

IX=(1+ y) X—2v' Y+ V2X—(X2+Y?)X,

aY=(1— vl Y+V2Y—(X?+Y?)Y, (5

with ygﬁz\/y’z—v’zz y'cos2. The two fixed points of
Eq. (5) are A== 1+ y/x.

In the upper region of Fig. 2, the heteroclinic orbit con-
necting in space the two fixed points is called an Ising wall:

X
Aising= V1+ verr tanhx—o,
with Xo= \2/(1+ yig)-

At yly=3, the Ising wall becomes unstable, and trans-
forms for decreasing/’ into a Bloch wall. This describes a
different kind of heteroclinic orbit. This transition is a pitch-
fork bifurcation. An appropriate order parameter of the Ising-

Bloch transition is the chirality = * \/1— 3y At the tran-

(6)

sition there is a twofold degeneracy between Bloch walls of TracingH?

either positive or negative chirality. Analytically, there exist
only perturbative solutions for Bloch walls near the transi-
tion from Ising walls:
X
AB|OCh: \/1+ ’}/éﬁ tanhX_ +| X X .
®  cosh—
Xo

@)

In the rotating casey’ #0), the Bloch walls propagate, and
at first order iny the velocityc of a straight wall i53,5,7]

37 xv'

c=—— 8
2v2 1+7eff ( )

~X-

n
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Bloch walls of opposite chirality are connected viaeke
point-type vortices of topological chargg= +1. Near the
Ising-Bloch transition the solution reafig|

X
Ancel= V1+ v tanhx— +i ” tan)‘(
0

cosh—
Xo

y

)

X

>, (©)

with ro=2/J1— 3y

Since the Nel-point-type vortices connect two Bloch
walls of opposite chirality, they propagate in the rotating
case in opposite directions. A double-armed spiral forms
around the vortex, wheng, gives approximately the size of
the spiral core.

If we take into account the elastic anisotropy, the thresh-
old of the Ising-Bloch transition becomes a function of the
angle between the interface and the magnetic field. Analyti-
cal expressions exist only for'=0 and the two extreme
cases called splay-bend walthe interface is perpendicular
to the magnetic fieldand twist walls(the interface is parallel
to the magnetic field From Ref.[5] the threshold of the
static Ising-Bloch transition becomes

(V1+8B+1)2
168— (\V1+88+1)2

where =K, /K, for splay-bend walls an@8=K,/K; for
twist walls in the approximation okK;=K5. For interfaces
with an angle different from 0 otr/2, the threshold value
7s lies in between the two above limits.

Using the elastic constants given in Sec. Il A for MBBA
at room temperature, we obtajd=32 and a~0.394 for
splay-bend walls, ang=3 and a~0.275 for twist walls
(see Fig. 2

One can associate the 2D parameter space of (&q.
(v',y") with the experiment. They ara priori 4D, with d
the thickness of the celk the electric fieldH the magnetic
field, andv the rotation frequency of the magnetic fi¢kke
Eqg. (2)]. However,E andd can be reduced to a single vari-
able and one obtains a three-dimensional parameters space in
H, v and o [see Figs. &) and 3b)], where
77)2

d

Yig=a Wwith a= (10

o=—¢€,E*— K3<

as a function ofy, with o as a parameter, one
finds four transition lines:

|

the Freedericksz transition to the synchronous regifpiéch-
fork bifurcation);

1
Xa

(’YlV)Z

H2=—

(1) + 0') with <0,

2
——o with <0,
Xa

(2) H2_

the Freedericks transition to the asynchronous regiitdepf
bifurcation);
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H2 (tesia?) Il. EXPERIMENT
A. Setup

The experimental setup used is similar to ones described
Bloch walls in Ref.[5]. The probe consists of two glass plates containing
the liquid crystal. The inner surfaces are faced with indium-
tin-oxide, a transparent conductor, allowing the application
of an electric field normal to the glass plates. A high-
frequency ac voltage of 5 kHz is used to avoid space-charge
creation and electrohydrodynamic effects. Since the dielec-
tric anisotropy of MBBA is negative, the electrical field

04

02

asynchronous regime

: 2 serves to destabilize the homeotropic state.
! homeotropic regime The inner surfaces of the glass plates are treated with
'L : ‘ ‘ s lecithin, which provides a homeotropic anchoring. The spac-
@ ° oo : ? Vian ers between the two glass plates were 3.5+ thick.
W et Typical values for the material parameters for MBBA at

room temperature are:

0.4 I ¢ splay-bend wall Ising walls 471.)( A m ) )
= 1 magnetic anisotrop
Mo Vs Y

Xa

Bloch walls

isotropic

® twist wall
0.2

- 12 As ; ;
€a=&4,cgf0= — 6.195<10 v dielectric anisotropy,

asynchronous regime

K;=6.0x10"%2 N splay-elastic constant,

(o) © i 2 v (ads) K,=4.0x10"%2 N twist-elastic constant,
FIG. 3. The theoretical transition lines in the experimental pa- K3=7.5x10 12 N bend-elastic constant,
rameter spacela o= —0.05 (corresponding to the cafe<Eg).
(b) ¢=0.3. y1=7.7x10"2 Nsm 2 rotational viscosity,
2 Vs
(3) H2=X— y1v (independent ofo), [H]=tesla= —,
a
the synchronous-asynchronous transition; and [E]= v
m L

o 3V2 2

(4) szi (c+3 /02+8(71V)2) VE— — — v, where the notatiotd for the magnetic induction is kept.
4xa 1 4 Xxa However, measurements performed by different groups

do not always coincidéRef. [6], Table 3.2, and the value

the Ising-Bloch transition(pitchfork bifurcation. The two ~ for the rotational viscosity y,, which controls the
types of Fredericksz transitions exist only far<0 (<E synchronous-asynchronous transition, changes strongly when
<E;) and varying the temperature near ambi¢8i.

The probe is fixed above the gap between two permanent
magnets, mounted on a turnable digee Fig. 4 The
Vo= — g with  o<0. magnetic-field strength is controlled by varying the distance
Y1 between the sample and the magnets. On the symmetry axis,
a horizontal field of up to 7 kG is applied near the magnets.
For >0, Bloch walls are stable for=0 [see Fig. 8)]. Gradients are encountered up to 500 G/mm in the vertical

This considerably facilitates experimental manipulations direction. . .
Note that the synchronous-asynchronous transition depends The probe is placed between crossed polarizer and ana-
neither on the applied electric field nor on the cell thicknesslyzer. The birefringence of the liquid crystal is used to ob-

With the elastic anisotropy, the static Ising-Bloch transitionserve the spiral pattern. A device is added, allowing us to
becomes turn the polarizer and analyzer to the same frequency as the

magnetic field. This is used in order to keep the angle be-
tween the polarized light and the director constant, while
= o, (11  being in the synchronous regime. This provides an image of
Xal—a constant contrast, which is useful for the image analysis.
Other experimental setups have been prop¢2ed, but
wherea is defined in Eq(10). this one has the advantage that single vortices of the desired

2 «a

H2
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FIG. 4. The experimental setup.

propagation
A . direction
sign can easily be created. The use of permanent magne

leads, especially in the range of high magnetic fields, to larg
gradients, which causes uncertainties in the strength of th
magnetic field. Additionally, high-field strengths are encoun-
tered only when bringing the sample near the magnets. Thi
makes it difficult to add a temperature control device.

In our experiment we use MBBA since it has, in compari-
son with other nematic liquid crystals, a large magnetic an:
isotropy. It is thus possible to perform the experiment in this
relatively simple setup, since permanent magnets are suff
cient as a field source. However, MBBA is subject to a deg- .
radation process in the presence gCHSchiff base. This is (b) 0 -
nearly inevitable due to the humidity of the air. The degra-
dation of the liquid crystal causes a decrease of the threshold
temperature of the nematic-isotropic transition which result

FIG. 5. Experimental picture and intensity of a spiral ata).A
. d f th . | vi . d the th %ypical image of the spirals observed in the liquid crystal
In a decrease o the rotational viscosy and the three (3x3 mn?). (b) The intensity plot when crossing perpendicularly a
elastic Constants. . . spiral arm, approximated by (x).
For anchoring on the glass plates the organic material
IeC|th|n.|s used. It is also suscgptlble to dggradanon. Thigg bright against the background, possibly with a very small
results |nlweaker surface _an_chormg of the dlre@}rThese dark area in the middlgsee Fig. §a)]. The intensity profile
degradation processes will influence th_e behaV|or_ pf the SPiwhen crossing the spiral arm perpendicularly can be approxi-
ral pattern, especially near the Freedericksz transition, whiclj,5teq byF (x) = Ag[ 1— cos27(x— Xo))], wherex and x,
is controlled by the elastic constant for bend deformation, .o renormalized by the width of the épiral arfy, is the
K3 and the strength of the surface anchoring. amplitude, and, is the displacement which gives the center
of the arm[see Fig. )].
B. Spiral analysis If we projectF(x) onto the double period

The analysis of the spirals consists of two steps. The first 1 4
one is to record series of images of the spiral as a function of ~ C12= f dx F(x)cog mx) = —Ag P sin(27Xo)
time, and the second one is to fit each spiral to an Archime- 0
dian form, which allows one to determine the wavelength
and the rotation frequenay. The program uses th&CREEN
MACHINE Il card, to display the live video of the camera on 1
the screen. It allows one to grab the single images of one cozf dx F(x)=Ay,
series either by hand or automatically at a fixed rate, where 0
the maximum rate of the acquisition card is about one image .
per five seconds. we obtain

The next step consists of finding the spiral arm, and is 1 4 c
followed by a fit into an Archimedian form. In the experi- Xo=o— arcsir( - L’Z)
ment the spiral arm, which is a curved, moving Bloch wall, 2@

and onto the fundamental mode
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H? ( gauss?)

2x107 g splay-bend wall
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Magnetic Field
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FIG. 7. The parameter space. The lines for the Ising-Bloch and
the synchronous-asynchronous transition are taken from theory. The
three vertical lines are the measurements performed for three rota-
tion frequencies of the magnetic fieldh, vg, and vc. The dia-
monds indicate the experimentally found asynchronous-
synchronous transition, and the upper ends of the lines are the

The actual intensity at a given position is interpolated frombeginni_ng of th_e Isi.ng-BIoch transi_ti_on. The heavy dots indicate the
. .2 o theoretical static Ising-Bloch transition for a splay bend and a twist

the four pixels surrounding it. By default we use five inter-, -

polations per pixel, but this can be adjusted by the user.

This procedure is repeated while turning with a step size
defined by the user around an approximate center given
the user and using the newly found position of the spiral ar
as radial distance. The program thus follows the spiral to
wards its center.

These points are then fitted to an Archimedian form
ro(8)=(N\2m)(0— 6y), where we have four unknown vari-

FIG. 6. Archimedian fit. The spiral of Fig.(8 fitted with an
Archimedian spiral (X 3 mn¥).

b Since we expect deviations from the purely Archimedian
n%piral near the cor¢l0], the points we use for the fit are

aken in the far field of the spiral. Nevertheless the deviation
from the Archimedian spiral near the core remains small in
general.

ables: the wavelengtk, the initial angled,, and the position
of the centery. Since one of the unknown variables is pe-

C. Experimental determination of the transition lines
in the parameter space

riodic, there exists no analytical expression to calculate | Ginzburg-Landau equation, which is used for model-
them, and we use an iterative method. ing the experiment, supposes small inclination angles of the

The first step is to transform the points from Cartesiangjrector from the initially homeotropic state. In order to vali-
coordinates to polar coordinates around a preliminary centefy e the model, we tried to use a destabilizing electric field

and to perform a linear regression on the thus-obtained funGyqt ahove the Freedericksz transition, small magnetic fields,
tionr(6). This gives us the preliminary wavelength and 54 0w rotation frequencies. In this range, due to the low
initial angle 6,. The function G(6)=r(6)—(\'/2m)(6  yelocities of the Bloch walls, the experiment becomes very
— 65) will have periodic oscillations with a period of”2  time consuming, and during the experiment temperature
depending in size and phase on the displacendertdf the  changes of up to 2 °C occurred around a mean value of 21 °C
preliminary center. Supposin@r|<N\, for the two compo-  due to the heating of the microscope.

nents of the displacement we obtain For the experimental data given in the following, thick-

ness of the sample was 23n and the voltage 5 . With a

o 27 magnetic field of about 3 kG, this corresponds to

T m dg G(6)cos, £~1.6 in Eq. (1). Thus even at this relatively low field
strengths the director in the midplane of the sample is al-
ready strongly inclined, but still lower field strengths caused

Sy=— — #2m g G(6)sind, experimental problems.
a

We did three series of measurements, each for a spiral
with a +1 vortex and a—1 vortex core, where we kept the
wheren is an integer. rotation frequency of the magnetic fieldconstant and var-

This procedure is repeated und¥| lies below an upper ied the magnetic field strengtH (see Figs. 7 and)8 The
boundary(actually a thousand pixelsThese fits are done on maximum field strength is given by the beginning of the
the two arms of the double-armed spiral and on each imagksing-Bloch transition of parts of the spiral arms. Because of
of the series(see Fig. 6. At the end of the series, linear the elastic anisotropy, this transition depends on the angle
regressions are done to calculate the mean value of the wavketween the Bloch wall interface and the magnetic field
length), the rotation frequency, and the angular separation and the parts of the spiral arms parallel to the magnetic field
of the two spiral arms. will transform to Ising walls at lower field strength. In Fig. 7,
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104 . 0,45 rads Spiral patterns exist even in the asynchronous regime, as
0.57 rad/s long as the rotation frequency of the spiralis larger than
0.69 rad/s the rotation frequency of the directén the rotating coordi-

8le o nate system2/T with [11]

>me

2
) ( %XaHZ) 2
V2
Y1
. a 4 the time for a 2r rotation of the director, and the rotation
! , . . L, = frequency of the magnetic field.
2800 3000 3200 3400 3600 Spirals with+ 1 vortex and—1 vortex cores differ in the
(@) Magnetic field H (gauss) selected wavelength and in the rotation frequenay up to
. 20%. The spiral around a vortex1 selects a larger wave-
0.45 rad/s length and a smaller rotation frequen@ee Fig. % due to
007 race A the anisotropy of elasticity, vortices 1 and—1 have dif-
ferent elastic energies which results in different core sizes.
"oa When decreasing the magnetic-field strength and passing
into the asynchronous regime, we observe a characteristic
increase in the wavelength, and, with increasing rotation fre-
. * A quency of the magnetic field, the wavelength at the
synchronous-asynchronous transition decreases.
« * . A The velocity of a straight walt= (1/27)\ w, which we
can deduce from the wavelength and the rotation frequency
2o r A of the spiral, should obviously be equal for the two types of

L H A A L [l il H H
2800 3000 2200 2100 500 spiral. In our measurement, this ha§ not been (_axac_tly the case
due to the above-mentioned experimental difficulties.

6 T=

1/2

Velocity (um/s)
>

350 -

w
=}
=}
T

> ue
L 4

Wavelength A (um)
[ ]

N
s3]
S

T

L]

(b) Magnetic field H (gauss)
For vg=~0.57 rad/s we performed numerical simulations
A of Eq. (4). Due to low differences betweetr 1 and —1
@ . v Oforads spirals in the simulation, we left out the term accounting for
Rl § A 069rads the elastic anisotropy. We transformed the experimental pa-
g =, rameters in the two-dimensional parameter space of&gq.
g 2 which leads tdsee Eq(3)].
g [ ]
= ots | . A 2
S T
£ . . A £aE+ K3 —
T oorr ., Yy =y ———— 1 1~1-3.48/,
* . A vy,
0.05 . = .‘ N
. . . ‘ | L with »'=0.195,...,0.227 andy’=0.209,...,0.321(see
2800 3000 3200 3400 3600 Fig. 2. The synchronous-asynchronous transition isvat
© Magnetic field H (gauss) ='~0.2231 and the experimental data are reduced to non-

dimensional units. We obtain good agreement between the
simulation and the experimental data and the smallest wave-
length at the synchronous-asynchronous trans[see Figs.

9(a)-HAc)]-

FIG. 8. Experimental datga) The velocity of a straight wall
c. (b) The selected wavelength (c) The rotation frequencw, as
a function of the magnetic-field strength The applied tension is
U=5V., and the cell thickness ©#=23 um. These experimental
points correspond to spirals wit+1 defect in the core.

D. Verification of the Gibbs-Thomson relation

the two dark points indicate the theoretical static Ising-Bloch  Wwe checked the validity of the Gibbs-Thompson relation
transitions for splay-bend and twist walls. On the other handfor the velocity of a curved Bloch wall:
the elastic anisotropy does not influence the synchronous-
asynchronous transition, and the data found experimentally ch=c—Dy, (12
provide a comparison with theory.

The threshold values for the synchronous-asynchronougith c,, the normal velocityc the velocity of an uncurved
transition, associated with the minimum selected wavelengtivall, D the orientational diffusion constant, andthe local
(and to the phase slip of the director relative to the magneticurvature.
field) are in good agreement with theoretical predicti(see In the case of a circle-shaped interface the curvajure
Figs. 7 and & equals the inverse of the radius. We measured the radius of
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¢ (um/s)
v o4
* * +1
O simulation
0.6 B 1.2 =
k4 o
£
2
04 | £
g 08|
o
>
02|
04 | b
1 1 L l .
= . ‘ . ‘ A ) 0.008 0.012 0.016 0.02
(a) 0.22 0.24 0.26 0.28 0.3 0.32 Curvature (um'1)
A (um)

FIG. 10. The Gibbs-Thompson relation. The veloatty of a
circle-shaped outward-moving interface, and the linear regression.

done at low-field strength for both vortex-(1) and vortex
(—1), we see that, in th&?-w space withk=2x/\, the
data collapse close to a unique curisee Fig. 11 This
behavior can be understood with the help of the simple geo-
metrical model developed in the early 1950s by Burton, Ca-
brera, and FrankBCF) [12] to describe the selection rules of
the spiral-shaped steps arising in crystalline growth. In this
model, the Archimedian spirals parameters are only con-
trolled by the Gibbs-Thomson relation, without taking into
account the influence of a possible spiral core size variation.

Y ) .
(b) 0.22 0.24 0.26 0.28 0.3 0.32 From this model we obtain
D
w=— k&,
m

wherem=0.331. The full line of Fig. 11 corresponds to this
model associated with the diffusion constant expected in our
experimental conditions, and is in good agreement with our
measurements. This model is also in agreement with experi-
mental observations of spiral waves in the Belousov-
Zhabotinsky reaction, where at leastk? is constan{13].

In a recent worK 14], one of us developed a model to take
into account the influence of the core size variation which is

L 1 L 1 v L * L
(c) 0.22 0.24 0.26 0.28 0.3 0.32

FIG. 9. Comparison between numerical simulations and experi
mental data. Experimental data are the reduced data correspondi
to Figs. 8a), 8(b), and &c), with vg~0.57 rad/s and with—1
vortex associated results added.

02 |

such a circle-shaped outward-moving Bloch wall as a func:
tion of time, from where we can derive the velocity as a
function of the curvaturg.

The experimental data show the expected linear behavic
(see Fig. 1D A linear regression gives a diffusion constant
of D=76.3 um?s, which is in rather good agreement with A

the expected diffusion constantD=(K;+K,)/2y, 0 _(') 4X;0_4 8x1I0‘4 00012’ & am?)
~64.9 um?/s. ' .

Wave vector k

01 |

Rotation Frequency o (rad/s)

y Sk m = 0.331

lll. FREQUENCY SELECTION RULES FIG. 11. Frequency selection. The experimental data with low-
If we take the experimental data, corresponding to thefield strength ink?-w space. The slope of the line B/m, with
synchronous regime, for the three series of measurements~64.9 um?s.
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predicted in the frame of a Ginzburg-Landau approach. A The experimental data plotted in thé-w» space all lie

deviation from the BCF model is expected in the small-along a single line of definite slope, in agreement with the
wavelength domain. Unfortunately the experimental obsersimple geometrical model of Burton-Cabrera-Frank having
vation of such a deviation would probably be only possibleonly the diffusion constant as free parameter: this behavior
at unrealistic high magnetic-field strength and for very thinseems consequently to be in common with systems as differ-
samples. Our system does not allow us to reach this paranent as the excitable waves of the Belouzov-Zhabotinsky re-
eters domain, and no substantial deviations relative to thaction or the spiral-shaped steps observed in crystalline

BCF model are visible. growth. Deviations from this simple selection rule, associ-
ated with the umbilic core size variations, which are pre-
CONCLUSION dicted in the ground of a Ginzburg-Landau approach, and

] ] ] ] observable in simulations of the previous equation, are not
In this work, we have investigated the geometrical prop-accessible to our experiment.

erties of experimental spiral waves, induced by a rotating

magnetic field, in a nematic sample undergoing the homeo-

tropic Fr'eedericksz. pransiti_on. This kjnd of numerical fit, ACKNOWLEDGMENTS
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